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LETTER TO THE EDITOR

Absorption of electromagnetic waves in two-dimensional
systems under a magnetic field and a periodic potential
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Abstract. The interaction of an electromagnetic wave with a two-dimensional electron gas
subjected to a magnetic field and a weak periodic potential is investigated. The electron–impurity
interaction is included to the lowest order. The periodic modulation of the Landau states has
a profound effect on the optical conductivity. Simultaneous excitation of an electron–hole pair
contributes significantly to the absorption around and below the cyclotron frequency. This is
in contrast to a uniform electron gas under a perpendicular magnetic field where electron–hole
pair excitations are absent.

A two-dimensional electronic system subjected to a perpendicular magnetic field and a
periodic modulation potential [1–12] represents an interesting and challenging problem in
physics, mathematics and computer simulation techniques. Since the discovery of the Weiss
oscillations in a weakly modulated system [1], research in this field has been rapidly growing.
Recent progress includes the experimental realization of the internal structures of the Landau
bands [13, 14], and quantum chaotic dynamics [15]. The effect of a unidirectional periodic
potential on the static properties can be summarized as: (i) the sharp Landau levels are
broadened so that the width and height of the density of states (DOS) are oscillatory with
magnetic field and level index; (ii) the DOS exhibits inverse-square-root singularities at the
band edges; (iii) there is an additional contribution to the conductivity due to the band
dispersion; (iv) the magnetoresistivity exhibits commensurability oscillations (or Weiss
oscillations). However, to date, the dynamical properties of this subtle system are still
far from clear. In a recent work we performed a calculation of the dynamical density
response function [16, 17]. It was revealed that the effect of the periodic potential on the
dynamical properties of the system is more complicated than that on the static properties:
(i) it introduces an additional channel in the density response which is due to the electron–
hole pair excitations; (ii) the pair excitation exhibits multiple singularities; (iii) for partially
filled Landau bands, the light scattering cross section has additional peaks, which at half-
filling is at the cyclotron frequency and its high harmonics.

The primary effect of a weak periodic potential is to lift the degeneracy of the
original Landau levels. The energy becomes dependent on the centre coordinate of the
cyclotron orbit,xo = qyl2, wherel2 = ch̄/(eB) is the magnetic length. In this letter, we
demonstrate that an additional weak periodic potential applied to a uniform 2DEG under a
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magnetic field will yield the following important results for the electromagnetic absorption:
(i) the centre coordinate dependent energy dispersion has introduced the electron–hole pair
excitation. This pair excitation is the dominant absorption mechanism forω < ωc, where
ωc = eB/(cm∗) is the cyclotron frequency; (ii) the absorption due to plasmon excitation is
no longer singular because the spectral weight is now distributed continuously over a finite
interval of wave vectors.

Let us consider a 2DEG in thex–y plane with a perpendicular magnetic fieldB,
subjected to a periodic modulation in thex-direction. The Hamiltonian is

H =
∑
i

p2
i

2m∗
+
∑
i<j

e2/κ

|ri − rj | +
∑
i

V0 cos(Kxi)+
∑
q,i,j

Uqeiq·(ri−Rj ) (1)

where ri = (xi, yi) is the electron position,pi = (−ih̄∇i − eAi/c) is the electron
momentum,Ai is the vector potential of the static magnetic field,Rj is the impurity
coordinate, andV0 is the strength of the modulation with perioda = 2π/K. We use the
electron–impurity interactionUq = 2πe2(exp(−qα))/κq, whereα is the typical distance
of the doping impurities from the 2DEG in a semiconductor heterostructure. The mass
of the impurity is treated as infinite. The interaction of an EM wave with the electrons is
Hγ = −eEγ ·

∑
i pi/(m

∗iω), whereEγ is the transverse electric field andω is the frequency
of the EM wave. We limit our discussion to low temperatures and setT = 0. All results
may easily be generalized to finite temperatures.

The energy loss rate of the EM field can be written using the Fermi golden rule as

R(ω) = 2π

h̄

e2

m2

1

ω2
(EF − E0− h̄ω)

∣∣∣∣∣∑
q

(
q−E+
ω + ωc +

q+E−
ω − ωc

)
Uq

× 〈F |
∑
i,j

eiq·(ri−Rj )|0〉 + iKVo√
2

(
E+

ω + ωc +
E−

ω − ωc

)
〈F |

∑
i

sin(Kxi)|0〉
∣∣∣∣∣
2

(2)

where |F 〉 and |0〉 are, respectively, the excited and ground state of the many-electron
system,q± = (qx ± iqy)/

√
2 andE± = (Ex ± iEy)/

√
2. This expression is exact to second

order in the impurity potentialUq and the modulation potentialV0, including all electron–
electron interactions and is valid for any strength of the magnetic field. The electron
scattering matrix contains two terms. The first term, which is proportional tonIqUq , is due
to electron scattering off the impurity potential, and the second term, which is proportional
toKVo, is due to the electron scattering off the modulation potential. HerenI is the density
of impurities. In typical experimental situations,Vo ∼0.5–2 meV,K ∼2–4×105 cm−1

and nI =2–5×1011 cm2. Therefore the rationIqUq/KVo � 1, and we will neglect the
electron scattering from the weak periodic potential. Furthermore, since we are seeking a
result which is in the lowest order in electron–impurity interaction, i.e. in the order|Uq |2,
the many-body states|F 〉, |I 〉 can be regarded as only having electron coordinates. In
this case

∑
j e−iq·Rj can be taken out of the matrix element and we can average over the

random impurity ensemble
(∑

j,j ′ e
−iq·Rj eiq′·Rj ′

)
/A = nI δq,q′ , whereA is the area of the

two-dimensional system.
We can relate the energy loss rate to the conductivity by ¯hωR(ω) = 2ARe[j(ω)·E∗(ω)].

The current can be written asj = σ · E whereσ is the conductivity, and we thus obtain
the real part of the diagonal element of the conductivity tensor

Re[σxx ] = η
∑
q

(q2
xω

2+ q2
yω

2
c )
|Uq |2
Vq

[
−Im

1

ε(q, ω)

]
(3)
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Re[σyy ] = η
∑
q

(q2
xω

2
c + q2

yω
2)
|Uq |2
Vq

[
−Im

1

ε(q, ω)

]
(4)

where Vq = 2πe2/κq and the prefactor isη = nI (e/m
∗)2(ω(ω2 − ω2

c )
2)−1. Due to

the unidirectional modulation potential, the conductivity is now, in general, anisotropic.
However, we see from (3) and (4) that close to the cyclotron frequency,ω ∼ ωc, the
anisotropy in the conductivity is small, even if the dielectric function is strongly anisotropic.
The anisotropy increases when the frequency deviates from the cyclotron frequency.

For the absorption in the system, we now need a model for the dielectric function in
a 2DEG with a perpendicular magnetic field and a periodic modulation potential. To this
end, we will use the results obtained within the random-phase approximation [16, 17, 18].
To simplify the discussion, we will consider the case of integer filling of the Landau
levels. The single-particle energy, to first order in the modulation potential, is given as
En(x0) = h̄ωc(n+1/2)+Un cosKx0, whereUn = V0Ln(H) exp(−H/2), H = (Kl)2/2 and
Ln(H) is a Laguerre polynomial. This is a good approximation if the cyclotron resonance
and the Fermi energy are not too small compared to the modulation potential. The imaginary
part of the dielectric function is [18, 16]

Im[ε(q, ω)] = 2h̄ωc
qa∗B

nF∑
m′=0

∞∑
m=x

Cm+m′,m′
[
θ
(
1U2

mm′ − (1E−m)2
)
/

√
1U2

mm′ − (1E−m)2

− θ (1U2
mm′ − (1E+m)2

)
/

√
1U2

mm′ − (1E+m)2
]
. (5)

In this equationnF + 1 is the number of occupied Landau bands,x = nF + 1− m′ is the
lower limit of the second summation, and the transition matrix forn′ < n is

Cn,n′ = n′!
n!
Xn−n

′
e−X[Ln−n

′
n′ (X)]2 (6)

whereX = (ql)2/2 andLmn (X) is an associated Laguerre polynomial. The real part of the
dielectric function is [16, 18]

Re[ε(q, ω)] = 1+ 2h̄ωc
qa∗B

nF∑
m′=0

∞∑
m=x

Cm+m′,m′
[
θ((1E−m)

2−1U2
mm′)/1E

−
m

×
√

1− (1Umm′/1E−m)2+ θ((1E+m)
2−1U2

mm′)/1E
+
m

√
1− (1Umm′/1E+m)2

]
(7)

whereθ(x) is the Heaviside function. We have introduced

1U2
mm′ = U2

m+m′ − 2Um+m′Um′ cosKx ′0+ U2
m′ (8)

where1E±m = mh̄ωc ± h̄ω, x ′0 = q sin(ϑ)l2 andϑ is the angle between the wave vectorq
and thex-axis. For the singularities in Im[ε(q, ω)] we see that for positive frequencies they
occur at1E−m = ±1Umm′ if subbandm′ is occupied and subbandm + m′ is empty [16].
Now, since the conductivity given by (3) and (4) in principle contains contributions from
all (q, ϑ) due to the scattering off the impurities, the singularities will occur in the interval
||Um+m′ | − |Um′ || 6 |1E−m | 6 ||Um+m′ | + |Um′ || and will be smoothed out.

The EM absorption of the system consists of contributions from both single-particle
excitations and plasmon excitations. We can separate these terms as−Im[1/ε] =
P{Im[ε]/(Im[ε])2 + (Re[ε])2} + πδ(ε), whereP denotes the principal part. From this
relation, it is well known that in the absence of a periodic modulation potential, the EM
response of a system with sharp Landau levels does not contain a contribution due to the
particle–hole pair excitation. The contribution to the EM response due to plasmon excitation
in such a system usually has sharp peaks due to the fact that for a given value of the photon
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wave vector, the plasmon energy is independent on the angle of the wave vector. The
application of a modulation potential has broadened the originally sharp Landau level. The
broadening depends on both the magnetic field and the Landau level index. The centre
coordinate dependent energy dispersion has two important effects on the EM response of
the system: (i) the particle–hole pair excitation channel has now been opened, and thus a
finite absorption occurs for frequencies aroundωc and each of its harmonics (nωc, where
n = 1, 2, 3, . . .). Therefore in a modulated 2DEG, the EM absorption is finite even for
frequencies less thanωc. (ii) the spectral weight in plasmon excitation is no longer only
dependent on the magnitude of the photon wave vector. It now also depends on the direction
of the photon wave vector. The spread of the spectral weight along different directions
(specified by the angular variableϑ) removes the singular behaviour (or smears out the
sharp peaks) in the absorption coefficient. The contribution from collective excitations to
the conductivity component Re[σxx ] is then given as

Re[σ cxx ] = 1

2
η(ω)

∫ 2π

0

dϑ

2π

∑
q∗

[
q(q2

xω
2+ q2

yω
2
c )
|Uq |2
Vq

∣∣∣∣∂ε(q, ϑ, ω)∂q

∣∣∣∣−1 ]
q=q∗

(9)

where theq∗s are solutions ofε(q∗, ϑ, ω) = 0. All singularities will thus be smoothed
out in the angular integral. We illustrate this behaviour in figure 1, where we show the
dispersionω(q) of the plasmon as a function of the wave vectorq for two values of the
angle (ϑ = 0, π/2). The system parameters used in the calculation are to be described
below. The areas below the dashed lines are the regimes of single-particle excitations,
where the collective excitations (plasmon) cannot exist. Forϑ = 0 (qy = 0, qx = q),
this regime is independent ofq, but for ϑ = π/2 (qy = q, qx = 0), this regime increases
as a function ofq. The angular dependence of the plasmon energy is stronger for small
frequency differences,ω(q) − ωc, as expected from the expression for the real part of the

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5

ω
/ω

c

ql

ϑ=π/2

ϑ=0

Figure 1. Normalized plasmon frequencyω(q)/ωc (solid curves) as a function of normalized
wave vectorql for a fixed angleϑ = 0 andϑ = π/2. The areas below the dashed lines are the
regimes of single-particle excitations. The system parameters are described in the text.
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dielectric function (7), since the angular dependent terms in the denominator are then more
important. The highest peak in the dispersion has a rather weak angular dependence, since
the dispersive part of energies in the real part of the dielectric function is less pronounced
for larger energy differences,ω(q) − ωc. This means that the peak in the conductivity
within the RPA around this frequency will remain sharp after the integration in (9), while
the other peaks will be more smoothed out. However, with a slight increase ofV0, the
maximum plasmon frequency may overlap with the particle–hole region around 2ωc, and
so be damped out.

We have used the following GaAs parameters in our numerical calculationm∗ = 0.067m,
κ = 13 (m is the electron mass). This gives an effective Bohr radius ofa∗B = 103 Å. The
magnetic field isB = 2 T, thus giving a Landau energy ¯hωc = 3.5 meV. With a 2D electron
density of 3.9×1011 cm−2, the four lowest Landau levels are filled. The modulation potential
is V0 = 0.5 meV, with a period ofa = 3000Å, and the typical distance from the impurities
to the 2DEG isα = 100 Å.

We consider the ‘resistivity’, Re[ρxx ] = Re[σyy ]/|σ 0|2, (σ 0 = ine2ω/(m(ω2 − ω2
c )))

aroundωc. The region of single-particle excitations is determined by transitions between
Landau level 3 and 4, for whichU3 = 0.11ωc andU4 = 0.10ωc. In principle the sum
|U3 + U4| = 0.21h̄ωc gives the maximum frequency range aroundωc for single-particle
excitations, and ¯hωc + |U3 − U4| = 1.01h̄ωc gives the minimum frequency for which the
plasmon may exist. However, as we can see from (3) and (4), the spectrum is effectively
cut off if qy is larger than 1/α, whereα is the typical distance from the impurities to
the 2DEG. The maximum argument forKx ′0 is thusKx ′0 ∼ 2πl2/(aα) ≈ 0.71, leading
to a more narrow band of single-particle excitations aroundωc. We show in figure 2 the
resistivity, Re[ρxx ], as a function of frequency. The solid curve displays the total resistivity

0
0.8 0.9 1 1.1 1.2

R
e[

ρ x
x]

 (
a.

 u
.)

ω/ωc

Figure 2. Resistivity, Re[ρxx ], as a function of frequency (solid curve). The dashed curve
represents the single-particle excitations, and the dotted curve the collective contributions. The
system parameters are described in the text.



L646 Letter to the Editor

including contributions from both single-particle and collective excitations. For frequencies
less than the cyclotron frequency, only single-particle excitations contribute (dashed curve
which merges with the solid curve slightly aboveωc). At frequencies slightly larger thanωc,
ω = 1.01ωc (see above), the collective excitations (dotted curve) start to contribute to the
conductivity and their contribution is dominant at high frequencies. The resistivities Re[ρyy ]
(not shown) and Re[ρxx ] are almost identical even though the anisotropy of the dielectric
function is large. As already mentioned this is due to the fact that we have integrated over
the angular variable for both Re[σxx ] and Re[σyy ].

We would like to point out that in a realistic system the Landau levels are not infinitely
sharp in the absence of a periodic modulation. Therefore, the particle–hole pair excitation
can make a nonzero contribution to the EM absorption. Broadening of the levels comes
from higher-order effects in both impurity and Coulomb interactions [19]. However, the
physical origin of this commonly studied collision broadening (without modulation potential)
is completely different from the physical origin of the modulation broadening discussed here.
The former is known as the ‘lifetime effect’ and the latter is the ‘dispersive effect’. The
particle–hole excitations due to collision broadening and due to modulation broadening, and
their respective contributions to the EM absorption are qualitatively different: (i) the former
is still isotropic because the scattering centres are randomly distributed in space, while the
latter is anisotropic; (ii) the EM absorption due to the former usually has a Lorentzian
type spectral distribution, which is relatively sharp, while that due to the latter is definitely
non-Lorentzian. The angular redistribution of the spectral weight due to plasmon excitation
is also a completely new mechanism compared to the collisional damping of plasmons in
unmodulated systems. The central result of this work is the novel absorption mechanism
due to modulation-induced level broadening. The RPA dielectric function is employed in
our work, but the qualitative physical picture should remain unchanged, if the dielectric
function is calculated beyond the random phase appproximation.
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